
© 1997 SIGS PUBLICATIONS, INC. 1

Design-for-Testability for Object-Oriented Software1

Jeffery E. Payne, Roger T. Alexander, Charles D. Hutchinson

1.0 Introduction
There are many reasons why object-oriented (OO) design and development has become the norm for
software creation. Two primary reasons are the positive impacts that abstraction/inheritance and
information hiding have on the development process. There is little debate that data abstraction coupled
with inheritance provides a powerful software design mechanism. Likewise, hiding data and internal
operations behind a public interface encourages development of clean, self-contained software components.
Both techniques facilitate software reuse, which many experts feel will result in significant software
productivity gains as OO design technology matures.

As much as inheritance and information hiding aid software design, they have disturbingly negative
consequences on testing. Studies have shown that information hiding and abstraction can actually decrease
the testability of software written in an object-oriented language [1]. Likewise, our experience is that
inheritance can significantly complicate the testing of objects. As the effort to test a system represents a
significant part of the overall development cost, these studies and experiences raise questions about the true
benefit of object-oriented development and the testability that OO systems actually have.

1.1 Software Testability
There are many definitions of testability. The most common is the ease of performing testing [2]. This
definition has its roots in hardware testing and is usually defined in terms of observability and
controllability. Binder defines these two facets of testability succinctly [3]:

“To test a component, you must be able to control its input (and internal state) and
observe its output. If you cannot control the input, you cannot be sure what has caused a
given output. If you cannot observe the output of a component under test, you cannot be
sure how a given input has been processed.”

Based upon these definitions, it is intuitive how controllability and observability impact the ease of testing.
Without controllability, seemingly redundant tests will produce different results. Without observability,
incorrect results may appear correct as the error is contained in an output that you are unable to see.

Other facets of testability that impact the ease of testing include:

• the amount of difficulty in setting up drivers to execute a component and creating stubs for
functionality that does not yet exist,

• the complexity and amount of inherited, parameterized, and polymorphic types in your software, and
• the thoroughness of specification and design information available for test design.

 Another definition of testability focuses on the value of testing. Voas argues that controllability and
observability do not adequately represent all the costs associated with testing, though they are certainly part
of the testability equation [4-6]. A key component is the ability of a test to reveal faults. Testing is of less
value if a particular testing activity fails to locate existing problems. This value definition of testability
attempts to measure the amount of effort necessary to adequately test a system such that all faults are
found.

 Our research in software testability has yielded evidence that there is a correlation between common OO
design techniques (including inheritance and information hiding) and low testability. A study performed by
Reliable Software Technologies for the National Institute of Standards and Technology (NIST) discusses

1 Payne, J. E., R. T. Alexander and C. D. Hutchinson (1997). Design-for-Testability for
Object-Oriented Software. Object Magazine. 7(5): 34-43.

© 1997 SIGS PUBLICATIONS, INC. 2

these findings [1]. From the ease of testing perspective, abstraction and the subsequent use of inheritance
and polymorphism complicate the testing of object hierarchies. From the value of testing perspective,
information hiding reduces the ability for faults to propagate to an observable output and hence reduces the
likelihood that faults will be revealed during testing.

 1.2 Design-for-testability
 These concerns regarding the cost-effectiveness of OO testing have spawned research into methods for
designing software to be testable. Design-for-testability (DFT) focuses on early life-cycle activities that
can increase the testability of systems. The goal of DFT for object-oriented systems is to increase both the
ease and value of testing such that the benefits of OO design and development are fully realized.

 In traditional hardware systems, design-for-testability is well understood. The specification and creation of
built-in tests and test benches are commonplace activities during hardware design. Complex hardware
components are designed-for-testability to assure that they operate correctly before mass production. Care
is taken to design-for-testability for these systems due to the extremely high costs associated with
correcting faults identified after mass production.

 Our premise is that as the criticality of OO software continues to increase, similar care is necessary to
assure our systems are adequately tested. While software manufacturing is simplistic (copying files is often
all that is necessary), the costs associated with correcting faults identified in the field and the loss of market
share due to reliability concerns continues to grow. We believe that design-for-testability techniques
provide practical mechanisms for assisting the testing process such that the software industry can reap the
productivity benefits of object-oriented design and development.

 This paper presents a set of practical design-for-testability techniques that can impact both the ease and
value of testing. Each of these techniques is based upon the concept of a software contract. We have used
these techniques on a wide variety of development projects during the past ten years and have consistently
improved the ease and value of our testing.

 2.0 Software Contracts

 A Software Contract is a formal or systematic specification of the behavioral semantics of a class and its
associated methods. There are three essential elements:

• an invariant expression that defines consistency for the class’s state-space,
• a precondition for each method that defines the conditions under which the method can be invoked,

and
• a postcondition for each method that defines precisely what the method does.

These three elements describe both the behaviors of a class (what the implementation must provide) and the
requirements for its proper use (what the client must do prior to using the object). This forms the contract.
The precondition constrains the client to ensure that the proper conditions exist prior to calling a method;
the postcondition constrains the implementer of the method to provide a specific behavior if the
preconditions are satisfied; the invariant constrains the state of the object within a method. Thus, if the
client calls a method m and satisfies the precondition, the implementation of m must do what the
postcondition describes, plus leave the object in a consistent, well-defined state. However, if the client fails
to establish the precondition, then the method is not obligated to establish the postcondition. At least two
possibilities exist here. The first is the cooperative non-defensive design view advocated by Meyer [7, 8].
In this view, a supplier is not obligated to provide any particular behavior if a method's precondition is not
satisfied, i.e. the method's behavior is undefined. The second possible view is the defensive view where the
supplier of a method provides behavior when a method's precondition is both satisfied and unsatisfied by a
client. In the latter case, this behavior includes throwing exceptions, returning values that indicate errors
conditions or setting some published global status object.

© 1997 SIGS PUBLICATIONS, INC. 3

Considering Binder’s definitions of controllability and observability above, preconditions and
postconditions are mechanisms to aid in the testability of a class. For a given method, its precondition
provides a way to control and observe the input in its implementation. It does this by preventing the
execution if the precondition assertion is not satisfied. Later, after the method’s implementation, we can
observe the method’s output in its postcondition. This aids in testability because the method itself can be
the only transformation for a given input into a specific output.

The characteristics of Software Contracts described above are part of the specification of a class, not its
implementation. However, we can make use of the contract elements in a class implementation to increase
observability simply by injecting appropriately formed assertions at key locations in the source code. An
assertion is a boolean expression that expresses some constraint that must be true at the location in the
source code where it appears. For example, an assertion on a the Pop method for the class Stack shown in
Listing 1 is that the stack is not empty when the method is invoked. This statement is usually expressed in
the syntax of the language being used, such as the assert macro in C/C++. In our example we use
Precondition(), Postcondition() and Invariant() to distinguish between different aspects of a contract. The
implementation of these are part of the particular assertion package that we use at RST. The specific
syntax and usage conventions will vary depending on which language (e.g Eiffel , Sather, Clu, etc.) and
assertion package you use.

Assertions inherently increase the observability of internal state information. By placing assertions at key
locations within a method and monitoring the state-space, the testability of an object is increased as:

• valuable knowledge is gained about the consistency and internal validity of an objects state,
• the incorrect use of methods is identified immediately, and
• implementation faults are identified and pinpointed quicker.

The following sections discuss the use of preconditions, postconditions, invariants, and data assertions to
increase the observability and fault revealing ability of your software.

1 template <class T, int kMaxSize>
2 class Stack
3 {
3 public:

Stack (void) : tos (0) {}

4 T Pop (void)
5 {
6 Invariant (StackInvariant());
7 Precondition (! IsEmpty()); // stack must not be empty

8 T theResult = itsStackImplementation0tos - 1];

9 tos--;

10 Postcondition (!IsFull()); // Stack cannot be full
// Post: Stack is not full and the popped element is
// no longer an element of the stack.

11 Invariant (StackInvariant());

12 return theResult;
13 }

14 void Push (const T& theT)
15 {
16 Invariant (StackInvariant());
17 Precondition (! IsFull()); // stack can't be full

18 itsStackImplementation[tos] = theT;

19 tos++;

20 PostCondition(itsStackImplementation[tos-1] == theT);

© 1997 SIGS PUBLICATIONS, INC. 4

// Post: The stack can't be empty, and the element at the top
// of the stack must be the argument passed to push().

21 Invariant (StackInvariant());
22 }

23 bool IsEmpty() const
24 {
25 Precondition(true);
26 Invariant (StackInvariant());
27 return tos > 0;
28 }

29 bool IsFull() const
30 {
31 Precondition(true);
32 Invariant (StackInvariant());
33 return tos == kMaxSize;
34 }

35 private:
36 bool StackIvariant() const
37 {
38 return tos >= 0 && tos <= kMaxSize;
39 }

40 int tos; // top of stack
41 T itsStackImplementation[kMaxSize];
42 };

Listing 1: Class showing use of Invariants, Preconditions, and Postconditions

2.1 Using Preconditions
Any method has a set of preconditions regardless of whether the designer has explicitly specified them or
not. At the very least, they are present in the assumptions underlying the implementation. If they have not
been specified explicitly, then a client of the method is likely to be unaware of the conditions necessary for
its correct usage. This becomes apparent when the expected behavior does not occur. Determining the
cause is likely to be tricky, particularly if the method’s implementation is complicated (assuming that it is
available). Injecting an appropriate assertion into the code to check the precondition will ensure that any
invocation that fails to satisfy the precondition will be observed in the method’s output. Thus, a
precondition assertion can be used to increase the observability of a method at the beginning of its
invocation just prior to its execution. It also serves as a correctness check on a method’s usage by a client.

From a client’s perspective, the input domain of a method is explicitly specified by its list of typed
parameters. For the Binomial function:

double Binomial(double successProb, int nbrTrials, int nbrSuccesses)

the input domain is double × int × int. This is a very large input domain. In reality, the input domain
specified by the parameters is often much smaller than stated. For example, in the Binomial function,
nbrTrials must be greater than the nbrSuccesses [9], thus reducing the input domain to those combinations
of values for which this constraint is satisfied. This fact is not explicit in the function’s parameters, but
instead is identified in the function’s specification. Unfortunately, this is not often done.

In addition to the explicit domain specified by parameters, a method m also has an implicit input domain
that is defined by the types of the state-variables that m is dependent upon in its implementation. This adds
an additional dimension to its input space for each dependency. In the Stack class mentioned earlier
(Listing 1), the method pop must make use of the Stack’s state-variables that provide the physical
representation of the logical stack (tos and itsStackImplementation). This could be an array or linked-list,
or some other data structure. In the example, it is an array of the template parameter T. Regardless, pop

© 1997 SIGS PUBLICATIONS, INC. 5

must make use of this representation to provide its behavior. Since the implicit portion of pop’s domain is
hidden, all of its clients must be unaware of the dependence that pop has on the physical representation.
Consequently, unless this information is made available somehow, a client will not be able to account for
the method’s complete input domain. The mechanism for doing this is the precondition that specifies the
conditions under which a method (or function) may be called. For pop, the precondition is that the stack
cannot be empty, as shown on line 7 of Listing 1.

2.2 Using Postconditions
Every method in a class does something. Sometimes this is simply a query that returns information about
the state-space (e.g. method IsEmpty() in Stack). At other times, it is a command that potentially results in
a state-change. Regardless of what it does, we want it done correctly, and this must be consistent with the
specified semantics. Postcondition assertions can help assure this. Specifically, they can inform us when
an implementation is not correct. Like preconditions, postconditions are also checked by injecting an
assertion at the appropriate location in the source code. However, postconditions are checked at the end of
a method’s invocation. Hence, these types of assertions must be placed just prior to locations in the method
that return control to the invoking client. This includes all explicit and implicit return statements.
Assertions used in this manner perform a check on the implementation of the method to ensure that it has
performed its operation correctly. If not, the assertion is violated, and this fact is propagated to the
method’s output. Thus, the postcondition assertion increases observability and provides a correctness
check of a method’s implementation.

Referring again to Listing 1, the pop method has a postcondition placed at line 10, prior to the return
statement. Likewise, the postcondition for push also appears prior to the return statement at line 20. As
this shows, the postcondition is able to check the implementation of the methods in terms of their effect on
the state-space of Stack. Note, however, that the postcondition assertion on pop is not as strong as it should
be. In particular, it does not say anything about what must be true of the state-variable
itsStackImplementation. The postcondition assertion should include a clause that states that the element
popped off the stack is no longer a member of the stack. However, in C++, as with most programming
languages, there is not a concise way to state this fact. Consequently, in this type of circumstance, the
actual postcondition for the method should be included as a comment on the postcondition assertion.

2.3 Using Invariant Assertions
One of the conditions implicit for the successful execution of a method is that the corresponding object’s
state-space is well defined and consistent. This condition must exist prior to the execution of the method’s
implementation. If not, the behavior of the method is unpredictable. It is possible for the method’s
precondition to include constraints that define this consistency requirement. However, every method in the
class interface would have to include them explicitly. A better approach is to separate those constraints that
must apply at all times (except during state changes) and place them into a special constraint referred to as
a class invariant [10].

The class invariant specifies precisely what consistency means for each object of the class. Further, the
invariant must hold prior to a execution of a method in the public interface, and immediately after. To
check for this important property, an invariant assertion can be injected at the beginning of a method's
implementation just prior to the first statement, and before the precondition assertion. The invariant
assertion passively checks to make sure that an object’s state is consistent prior to execution of a public
method. If not, the invariant is violated and this fact is propagated to the method’s output.

The other place that an invariant assertion is useful is in checking that the state-space of an object is still
consistent after a method has executed. Thus, the implementation of each public method in a class has the
responsibility to ensure that the invariant is preserved. State errors resulting from incorrect
implementations are often subtle and difficult to find. An Invariant assertion can help by acting as a
passive monitor reporting whenever an object is left in an inconsistent state after a method has finished
executing.

Like postcondition assertions, invariant assertions are placed immediately prior to those locations that

© 1997 SIGS PUBLICATIONS, INC. 6

return control to the client, usually just after the postcondition check (shown on lines 11 and 21 for methods
pop and push, respectively). They can also be placed immediately before an exception is thrown in those
situations where the invariant of the object has been restored. In the latter case, something has gone wrong,
but object will still be left in a consistent state; hence the need for the invariant assertion.

If any aspect of the class invariant is not preserved by a method's implementation, then the assertion is
violated and that fact is propagated to the method’s output. Thus, an invariant assertion provides an
additional correctness check on a method’s implementation with respect to the state-space consistency.
Combined with appropriately formed postcondition assertions, the two provide increased observability into
the general state of an object and the correctness of a particular method's implementation.

2.4 Using Data Assertions

As we have seen, precondition, postcondition, and invariant assertions enhance the testability of object-
oriented programs by allowing us to passively observe both the complete input and output domains of a
method m. However, what they do not check for are intermediate state errors that can occur as the method
is executed. It is possible for a fault to exist at some location in m that, if executed with a particular input i,
results in a failure that is not propagated to the output. Statements that are subsequently executed in m may
mask the failure. In this case, m is said to be coincidentally correct with respect to i. And there is no way
for the client to detect the failure. It is possible that though a failure has occurred, neither the postcondition
or invariant assertions can detect it because it has been masked or it is coincidentally correct with respect to
the constraints. To make matters worse, the failure may have infected the state-space of the corresponding
object, making it likely that future method invocations will also fail. Coincidental correctness impacts the
value of testing perspective of testability. If your software successfully masks faults such that failure is
infrequenty, it is much more likely that your testing will not identify these faults. Data assertions provide a
means ofexamining the internal state of your object to potentially identify corrupt data states before they
are masked.

Total observability is what is desired. Unfortunately, this is not always practical, so we must settle for
partial observability. As described earlier, what we want is to be guaranteed that if a failure occurs, we find
out about it. We want nothing to be hidden in this situation. We can achieve this level of observability by
placing data assertions at key locations within the body of a method. These assertions express correctness
constraints on the partial execution of the method up to a given location with respect to some aspect of the
state-space. What we desire is to form a data assertion that is strong enough to detect a failure if the state-
space becomes infected at that particular location. Then total observability with respect to the
corresponding fault can be achieved. If a failure occurs, we will find out about it because the assertion is
violated. Achieving this level of observability is dependent upon a careful analysis of the method’s
implementation. To assist in this analysis, Voas has developed a technique for identifying locations that
are likely to hide failures [4]. This identifies those locations that should be guarded by a data assertion to
increase observability.

2.5 Assertions and Inheritance
The discussion above has been limited solely to testability issues related to information hiding and
encapsulation. The other dimension that must be considered is inheritance and what it contributes to the
problem of testability.

In this article, we consider inheritance solely from the perspective of a sub-typing relationship [11]. If a
class B is a subtype of a class A, then the behavior of a B must be consistent with that of A. An instance of
B must be freely substitutable for an instance of A. Clients must not be aware of the fact that they are using
B’s instead of A’s. What this means is that any polymorphic method overridden by B must have the same
semantics as the corresponding method in A. If B does override the implementation of some method m that
is defined by A, since B is a sub-type of A, the precondition of B’s method mB, cannot require more than A’s
method mA. Similarly, the postcondition of mB cannot promise less than the postcondition of mA.
Practically speaking, this means that mB must be able to be called anywhere that mA can be. Further, mB

must do at least what mA does. These precondition and postcondition requirements are expressed formally

© 1997 SIGS PUBLICATIONS, INC. 7

as the assertion constraints Pre(mA) ⇒ Pre(mB) and Post(mB) ⇒ Post(mA), respectively.

In addition to the assertion constraints on preconditions and postconditions, the implementation of mB must
assume the same responsibilities that mA does with respect to the state-space of A. mB must modify at least
the same state-variables that mA does, and in a manner that is consistent with the postcondition of mA. If mB

does modify additional state-variables in A’s state-space, then care must be taken to ensure that no side-
effects are introduced that will cause subsequent precondition violations of other methods defined in A’s
interface. Further, mB must preserve the invariant of A, just as any of A’s methods must. If any of these
constraints are violated in the implementation of mB, then the principle of substitution [12] is violated and a
client will not be able to substitute an instance of B for an instance of A.

So, how do polymorphic methods and inheritance affect testability? Observe that all of the issues and
techniques discussed in the previous sections above still apply. We want every method, regardless of
where it is implemented, to provide as much observability as possible. For inherited non-polymorphic
methods, this means that we want the base class to apply assertions as described earlier. This also applies
to polymorphic methods that are inherited but not overridden in the derived class. For those inherited
polymorphic methods that are overridden, we want to inject assertions to check the preconditions,
postconditions, and class invariant, as we described earlier. However, the assertions must conform to the
constraints governing precondition and postcondition weakening and strengthening, respectively. We must
make sure that the base class’s invariant is preserved as well as the derived class’s. This is summarized in
the rule of consistent observability for sub-typing:

Rule of consistent observability (for sub-typing): An overriding method in a derived class must
provide at least an equivalent level of observability as the overridden method when an instance of the
derived class substituted for an instance of the base class.

What this really means is that we want the methods in the derived class to provide the same level of
observability to a client that the base class has. If we allow the observability to be less for the derived class
implementation, then we have effectively reduced the apparent observability of the base class since there
are now situations where it will have less observability when an instance of the derived class is substituted.
This is due to the lower observability afforded by the implementation of the overridden method. The
overriding implementation must at least ensure that the precondition and postcondition are consistent with
the overridden method, and that the appropriate assertions are injected into the implementation. Further,
the implementation must preserve the base class’s invariant, as well that of its own class.

3.0 Use of Software Contracts
The previous sections have described how software contracts and assertions can increase testability by
increasing observability. In practice, we have found that the use of assertions is extremely effective at this.
They not only increase observability (which aids the ease of testing) and identify internal state errors
(which aids the value of testing), but also can be used to properly specify inheritance relationships and
control the sequencing of methods and. Both of these properties can ease the testing process. This section
extends the use of assertions to handle inheritance relationships and method sequencing.

3.1 Down-calling
Down-call is a technique that can be used to ensure consistency across a class’s public interface. Most
programming languages consider only the syntactic signature of a method. They do not consider the
semantics of the interface, and do not provide a way to consistently evaluate them (i.e. preconditions &
postconditions) across all derivations of a class.

Down-calling is a mechanism that can be applied to ensure that the entire interface (both syntactic and
semantic) is consistent for both non-polymorphic and polymorphic methods. Of these, the first is trivial. It
is not possible to provide a different implementation for a non-polymorphic method in a derived class and
expect it to be used when an instance of the derived class is substituted for an instance of the base class.
Consequently, derivations of that class will inherit all non-polymorphic methods and their implementations.
This includes both precondition and postcondition evaluations made in base class method implementations.

© 1997 SIGS PUBLICATIONS, INC. 8

Polymorphic methods are problematic. If the polymorphic method has public visibility, derived classes can
provide a different implementation. The problems created include: 1) derived classes may not re-implement
the correct precondition and postcondition checks in the method, 2) peer derived classes may implement
different precondition and postcondition checks, and 3) the derived class may not implement the
precondition and postcondition checks at all. These problems now change the semantics of the interface.
The manner that the interface should be used is now based on a particular derivation rather than the
semantics of the original abstraction. Fundamentally, it now represents a different abstraction since the
class cannot be used in its abstract form consistently across all derivations. This violates the sub-typing
relationship between base and derived classes. The syntactic signature is of the correct form, but from a
behavioral perspective, we have failed to achieve the same semantic form of the abstraction. That is, the
derivation is not a sub-type of the base abstraction.

Down-calling solves this consistent semantic interface problem associated with polymorphic methods. The
polymorphic call is structured so that a method’s preconditions and postconditions are always evaluated
consistently across all derivations of a class. The technique uses two types of methods to achieve this
consistency: interface methods, and implementation methods. Interface methods are public and visible to
the outside word, and can be invoked directly. However, by design, they are not polymorphic since derived
classes are not permitted to provide a different implementation. Instead, the derived class will inherit the
base class’s implementation of the interface method. This represents a separation of concerns since the
interface method manages the preconditions and postconditions for the abstraction (i.e. the semantics), and
the implementation method provides a suitable conforming implementation.

Unlike interface methods, implementation methods are not public to the outside world. Their visibility is
restricted to the inheritance hierarchy, and they are polymorphic. These methods are used to provide an
implementation for a particular interface method. Since they are polymorphic, they allow derived classes
to provide specific implementations suitable for their particular behaviors. Many languages, such as C++
and Java, provide mechanisms to support this type of restricted visibility for polymorphic methods.

Interface methods are responsible for ensuring that the logical semantics of a method are enforced. For a
particular method, a check is done to ensure that the client invoking the method has established its
precondition. If not, a precondition violation occurs and this fact is propagated to the method’s output.
Otherwise, the interface method invokes the implementation method, forwarding any parameters passed by
the client. After the implementation method has executed, the interface method checks the postcondition to
ensure that the implementation executed correctly. If so, any return value is passed back to the client.
Otherwise, a postcondition violation occurs and this fact is also propagated to the method’s output. Note
that interface method also has the responsibility for checking the class invariant both before and after the
implementation executes. Similarly, if an invariant violation occurs, then that information is propagated to
the method’s output. In this manner, the interface provides the necessary constraints to ensure that all
implementations of a method across all derivations of an abstraction are correct.

To understand the use of interface and implementation methods, consider the C++ example in Listing 2,
which shows a simple class Telephone. This example provides both the specification and implementation
for the class. In the specification for class Telephone, the Dial() method is an interface method, and
method DialImplementation() is its corresponding implementation method. In Dial()’s implementation, a
check of the precondition is done. It then invokes the implementation method DialImplementation().
Finally, it evaluates the postcondition.

The telephone example also illustrates that the postcondition of a method must also consider the set of
exceptions that can be thrown. The exceptions thrown by derived classes must be consistent from the view
of a client using the public interface. Only those exceptions that are part of the semantic interface should be
thrown.

class Telephone
{
public:

// Exception class thrown when unable to dial phone.
class Busy

© 1997 SIGS PUBLICATIONS, INC. 9

{
};

void Dial (void);
// Interface Method
// The semantics this interface provides is to dial a phone.
// If unable to dial, the callee should catch the Busy exception.

protected:
virtual void DialImplementation (void) = 0;

// Implementation method that derived classes must provide to dial
// a phone. If unable to dial the phone derived classes must throw
// Telephone::Busy exception

private:
bool offline;

};

// ---

void Telephone::Dial ()
{
Precondition (offline == true);

try
{

// Call down the hierarchy with the polymorphic method.
DialImplementation ();

}
catch (const Busy& theBusySignal)
{

// this is expected and is rethrown to client
// it is considered part of the interface.
throw;

}
catch (...)
{

// check to make sure that exceptions were not thrown that are
// not considered part of the interface. this is part of the postcondition
// that needs to be evaluated
throw PostconditionFailure ();

}

offline = false; // set state variable to record state of object

Postcondition (offline == false);
}

// ---

Listing 2: Telephone abstraction

Now consider the C++ example in Listing 3 that extends class Telephone. The two derivations for class
Telephone are TouchToneTelephone, and InternetTelephone.

class TouchToneTelephone : public Telephone
{
public:
protected:

void DialImplementation (void);
// Implementation method that dials a touch tone telephone.
// If unable to dial the phone, the Telephone::Busy exception
// is thrown.

private:
};

// ---

void TouchToneTelephone:: DialImplementation()

© 1997 SIGS PUBLICATIONS, INC. 10

{
// Do whatever is necessary to dial a touch tone telephone.

}

// ---

class InternetTelephone : public Telephone
{
public:
protected:

void DialImplementation (void);
// Implementation method that dials an internet telephone.
// If unable to dial the phone, the Telephone::Busy exception
// is thrown.

private:
};

// ---

void InternetTelephone:: DialImplementation()
{

// Do whatever is necessary to dial an internet telephone.
}

// ---

Listing 3: Telephone abstraction subtypes

A client that uses Telephone’s interface is assured that the preconditions & postconditions on its public
interface are assessed consistently across all derivations, even when different kinds of Telephone
abstractions are used.

The previous two examples show how the consistency of a class’s interface can be ensured, including both
the syntactic and semantic portions. This consistency reduces programming complexity, and eliminates the
possibility of errors that are often made by ensuring that preconditions and postconditions are always
evaluated consistently. This aids observability by satisfying the rule of consistent observability presented
earlier.

3.2 Sequencing Constraints
A sequencing constraint is a variation of a precondition that requires a class’s interface to be used in a
particular order. There is a specific sequence in which the methods must be invoked. If the methods are
invoked in an incorrect order, then the interface is being used improperly by some client. This ordering can
be modeled with state transition diagrams where the event that triggers the transition are the method
invocations. For example, consider the C++ example shown in Listing 4 for class File. In this example,
there are four methods: Open(), Close(), Read(), and Write(). A typical use of this class would be to open a
file, read or write some data from it, and finally close it. An important problem is: how can we ensure that
all clients who use class File will use it correctly ? Will all clients first invoke Open() and then some
number of Read() and Write() and finally Close() ? Or will the client invoke first Open() and then Read(),
and finally Write() –forgetting to close the file.

class File
{
public:

void Open (const string& theFileName);
void Close (void);
void Read (void* theBuffer, unsigned long theSize);
void Write (const void* theBuffer, unsigned long theSize);

protected:
private:
};

© 1997 SIGS PUBLICATIONS, INC. 11

Listing 4: Abstraction without sequencing constraints

Sequencing preconditions provide a mechanism to manage the states that are acceptable for a given object
based on the context of how it was designed. An internal state variable can be used to keep track of the
current state of the object (i.e. its history of method invocations). The implementation of each method’s
precondition inspects this state variable determining whether the method is being used in the proper
sequence. An example of this is shown in Listing 5. This is the same example shown in Listing 4, but
with sequencing preconditions added. In the figure, the state variable itsFileState holds the current state of
the file object. This variable is based on the FileState enumeration type that specifies the different states of
an instance of File. As illustrated by the state-transition diagram shown in Figure 1, there are two states
that the file can occupy: Ready For Opening, and Ready For I/O. Analyzing the preconditions for the
public methods, we see that Read(), Write(), and Close() can be called when the file is in the Ready for I/O
state. The method Close() provides the transition from the Ready For I/O state to the Ready For Opening
state. This is the only state that it is valid to invoke this method.

class File
{
public:

File (void);
~File (void);

void Open (const string& theFileName);
void Close (void);
void Read (void* theBuffer, unsigned long theSize);
void Write (const void* theBuffer, unsigned long theSize);

protected:
private:

enum FileState
{

eReadyForOpening = 0, // allowed to open a file & initial state
eIOAllowed // allowed to read and write to a file

};

FileState itsFileState;
};

// ---

File::File (void)
: itsFileState (eReadyForOpening)
{
}

// ---

File::~File (void)
{
Precondition (itsFileState == eReadyForOpening);
}

// ---

void File::Open (const string& theFileName)
{
Precondition (itsFileState == eReadyForOpening);

...

itsFileState = eIOAllowed;

Postcondition (itsFileState == eIOAllowed);
}

© 1997 SIGS PUBLICATIONS, INC. 12

// ---

void File::Close (void)
{
Precondition (itsFileState == eIOAllowed);

...

itsFileState = eReadyForOpening;

Postcondition (itsFileState == eReadyForOpening);
}

// ---

void File::Read (void* theBuffer, unsigned long theSize)
{
Precondition (itsFileState == eIOAllowed);
...
Postcondition (true);
}

// ---

void File::Write (const void* theBuffer, unsigned long theSize)
{
Precondition (itsFileState == eIOAllowed);
...
Postcondition (true);
}

// ---

Listing 5: Abstraction with sequencing constraints

At construction time itsFileState is initialized to the Ready For Opening state. Also, the destructor
precondition inspects itsFileState to determine whether the file has been closed. This helps to determine if
somewhere in the program, the implementation has failed to invoke the Close () method.

Figure 1: State-Transition Diagram modeling sequencing constraints

Sequencing preconditions aid observability by ensuring that clients using the interface do so in a manner
that is semantically correct. This ordering is considered part of the contract that clients must adhere to
when invoking the methods. It is dynamic in nature in the sense that it can only be inspected at execution
time.

Ready for
Opening

Ready for
Closing

Read
&

Write

Close

Open

© 1997 SIGS PUBLICATIONS, INC. 13

4.0 Conclusions

The benefits of object-oriented development are threatened by the testing burden that inheritance and
information hiding place upon objects. In terms of both the ease of testing and the value of testing, object-
oriented software has been demonstrated to have lower testability than procedural implementations. To
address these concerns, software design-for-testability is becoming important. There are numerous
practical approaches to increasing the testability of systems during design. We advocate the use of
software contracts to increase the observability of objects and also to identify corrected internal states
within a program. Our experience suggests that the use of assertions can have a significant impact on the
overall testability of object-oriented software.

References

1. Corporation, R.S.T., Testability of Object-Oriented Systems, . 1995, National
Institute of Standards and Technology: Gaithersburg, MD. Report Number: NIST
GCR 95-675

2. IEEE Standard Glossary of Software Engineering Terminology, . 1990, IEEE
Computer Sociey.

3. Binder, R.V., Design for Testability with Object-Oriented Systems.
Communications of the ACM, 1994. 37(9): p. 87-101.

4. Voas, J.M., PIE: a dynamic failure-based technique. IEEE Transactions on
Software Engineering, 1992. 18(8): p. 717-27.

5. Voas, J.M. and K.W. Miller, Software Testability: The New Verification. IEEE
Software, 1995. 12(3): p. 17-28.

6. Friedman, M.A. and J.M. Voas, Software Assessment. 1995, New York: John
Wiley & Sons.

7. Meyer, B., Design By Contract, in Advances in Object-Oriented Software
Engineering, D. Mandrioli and B. Meyer, Editors. 1991, Prentice Hall:
Englewood Cliffs, N.J. p. 1-50.

8. Meyer, B., Applying 'design by contract'. Computer, 1992. 25(10): p. 40-51.

9. Snedecor, G.W. and W.G. Cochran, Statistical Methods. 8 ed. 1989: IOWA State
University Press.

10. Meyer, B., Object-Oriented Software Construction. 2 ed. 1997, Englewood Cliffs,
New Jersey: Prentice-Hall.

11. Liskov, B. and J.M. Wing. Specifications and their use in defining subtypes. in
8th Annual ACM Conference on Object-Oriented Programming Systems,

© 1997 SIGS PUBLICATIONS, INC. 14

Languages, and Applications, OOPSLA 1993. 1993. Washington, DC, USA.

12. Liskov, B. Data abstraction and hierarchy. in OOPSLA '87: Conference on
Object Orientated Programming, Systems, Languages and Applications. 1987.
Orlando, FL, USA.

